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Microtubes
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2Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia, Canada

Laminar fully developed flow and pressure drop in linearly varying cross-sectional converging–diverging microtubes have
been investigated in this work. These microtubes are formed from a series of converging–diverging modules. An analytical
model is developed for frictional flow resistance assuming parabolic axial velocity profile in the diverging and converging
sections. The flow resistance is found to be only a function of geometrical parameters. To validate the model, a numerical
study is conducted for the Reynolds number ranging from 0.01 to 100, for various taper angles, from 2 to 15 degrees, and for
maximum–minimum radius ratios ranging from 0.5 to 1. Comparisons between the model and the numerical results show
that the proposed model predicts the axial velocity and the flow resistance accurately. As expected, the flow resistance is
found to be effectively independent of the Reynolds number from the numerical results. Parametric study shows that the effect
of radius ratio is more significant than the taper angle. It is also observed that for small taper angles, flow resistance can be
determined accurately by applying the locally Poiseuille flow approximation.

INTRODUCTION

There are numerous instances of channels that have
streamwise-periodic cross sections. It has been experimentally
and numerically observed that the entrance lengths of fluid flow
and heat transfer for such streamwise-periodic ducts are much
shorter than those of plain ducts, and quite often, three to five
cycles can make both the flow and heat transfer fully developed
[1]. In engineering practice the streamwise length of such ducts
is usually much longer than several cycles; therefore, theoret-
ical works for such ducts often focus on the periodically fully
developed fluid flow and heat transfer. Rough tubes or channels
with ribs on their surfaces are examples of streamwise-periodic
ducts that are widely used in the cooling of electronic equip-
ment and gas turbine blades, as well as in high-performance
heat exchangers.

The authors are grateful for the financial support of the Natural Sciences and
Engineering Research Council (NSERC) of Canada and the Canada Research
Chairs Program.

Address correspondence to Mohsen Akbari, Mechatronic Systems Engi-
neering, School of Engineering Science, Simon Fraser University, Surrey, BC,
V3T 0A3, Canada. E-mail: maa59@sfu.ca

Many researchers have conducted experimental or numeri-
cal investigations on the flow and heat transfer in streamwise-
periodic wavy channels. Most of these works are based on nu-
merical methods. Sparrow and Prata [1] performed a numerical
and experimental investigation for laminar flow and heat trans-
fer in a periodically converging–diverging conical section for
the Reynolds number range from 100 to 1000. They showed
that the pressure drop for the periodic converging–diverging
tube is considerably greater than for the straight tube, while
Nusselt number depends on the Prandtl number. For Pr < 1,
the periodic tube Nu is generally lower than the straight tube,
but for Pr > 1, Nu is slightly greater than for a straight tube.
Wang and Vanka [2] used a numerical scheme to study the flow
and heat transfer in periodic sinusoidal passages. Their results
revealed that for steady laminar flow, pressure drop increases
more significantly than heat transfer. The same result is reported
in Niceno and Nobile [3] and Wang and Chen [4] numerical
works for the Reynolds number range from 50 to 500. Hydro-
dynamic and thermal characteristics of a pipe with periodically
converging–diverging cross section were investigated by Mah-
mud et al. [5], using a finite-volume method. A correlation was
proposed for calculating the friction factor, in sinusoidal wavy
tubes for Reynolds number ranging from 50 to 2,000. Stalio
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M. AKBARI ET AL. 629

and Piller [6], Bahaidarah [7], and Naphon [8] also studied
the flow and heat transfer of periodically varying cross-section
channels. An experimental investigation on the laminar flow
and mass transfer characteristics in an axisymmetric sinusoidal
wavy-walled tube was carried out by Nishimura et al. [9]. They
focused on the transitional flow at moderate Reynolds numbers
(50 to 1,000). Russ and Beer [10] also studied heat transfer
and flow in a pipe with sinusoidal wavy surface. They used
both numerical and experimental methods in their work for the
Reynolds number range of 400 to 2,000, where the flow regime is
turbulent.

For low Reynolds numbers, Re ∼ 0(1), some analytical and
approximation methods have been carried out in the case of
gradually varying cross section. In particular, Burns and Parkes
[11] developed a perturbation solution for the flow of viscous
fluid through axially symmetric pipes and symmetrical channels
with sinusoidal walls. They assumed that the Reynolds number
is small enough for the Stokes flow approximation to be made
and found stream functions in the form of Fourier series. Manton
[12] proposed the same method for arbitrary shapes. Langlois
[13] analyzed creeping viscous flow through a circular tube
of arbitrary varying cross section. Three approximate methods
were developed with no constriction on the variation of the wall.
MacDonald [14] and more recently Brod [15] have also studied
the flow and heat transfer through tubes of nonuniform cross
section.

The low Reynolds number flow regime is the characteristic of
flows in microchannels [16]. Microchannels with converging–
diverging sections maybe fabricated to influence cross-stream
mixing [17–20] or result from fabrication processes such as
micromachining or soft lithography [21].

Existing analytical models provide solutions in a complex
format, generally in a form of series, and are not amicable to en-
gineering or design. Also, existing model studies did not include
direct comparison with numerical or experimental data. In this
study, an approximate analytical solution has been developed
for velocity profile and pressure drop of laminar, fully devel-
oped, periodic flow in a converging–diverging microtube, and
results of the model are compared with those of an independent
numerical method. Results of this work can be then applied to
more complex wall geometries.

PROBLEM STATEMENT

Consider an incompressible, constant property, Newtonian
fluid which flows in steady, fully developed, pressure-driven
laminar regime in a fixed cross section tube of radius a0. At the
origin of the axial coordinate, z = 0, the fluid has reached a fully
developed Poiseuille velocity profile, u(r) = 2um,0[1 − ( r

a0
)2],

where um,0 is the average velocity. The cross-sectional area for
flow varies linearly with the distance z in the direction of flow,
but retains axisymmetric about the z-axis. Figure 1 illustrates
the geometry and the coordinates for a converging tube; one
may similarly envision a diverging tube.

Figure 1 Geometry of slowly varying cross-section microtube.

The governing equations for this two-dimensional (2-D) flow
are:

1
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(3)

with boundary conditions

u(r, z) = 0, v(r, z) = 0; r = a(z) (4)

u(r, 0) = 2um,0

[
1 −

(
r

a0

)2
]

; z = 0

P (r, 0) = P0

In this work we seek an approximate method to solve this
problem.

MODEL DEVELOPMENT

The premise of the present model is that the variation of the
duct cross section with the distance along the direction of the
flow is sufficiently gradual that the axial component of the veloc-
ity profile u(r, z) remains parabolic. To satisfy the requirements
of the continuity equation, the magnitude of the axial velocity
must change, i.e.,

u(r, z) = 2um(z)

[
1 −

(
r

a(z)

)2
]

(5)

where um(z) is the mean velocity at the axial location z and can
be related to the mean velocity um,0 at the origin z = 0, and
using conservation of mass as

um(z) =
[

a0

a(z)

]2

um,0 (6)

Then the axial velocity profile u(r, z) becomes

u(r, z) = 2um,0

[
a0

a(z)

]2
[

1 −
(

r

a (z)

)2
]

(7)
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Substituting Eq. (7) into the continuity equation, Eq. (1), and
integrating leads to

v(r, z) = 2mηum,0

[
a0

a(z)

]2
[

1 −
(

r

a (z)

)2
]

(8)

where m = da(z)
dz

is the wall slope and η = r
a(z) .

PRESSURE DROP AND FLOW RESISTANCE

Comparing Eqs. (7) and (8) reveals that v
u

= mη; thus, one
can conclude that if m is small enough, v will be small and the
pressure gradient in the r direction can be neglected with respect
to pressure gradient in the z direction.

Knowing both velocities and neglecting ∂P
∂r

, pressure drop in
a converging–diverging module can be obtained by integrating
Eq. (2). The final result after simplification is

�P = 16µum,0L

a2
0

[
ε2 + ε + 1

3ε2
+ m2(1 + ε)

2ε5

]
(9)

where �P is the difference of average pressure at the module
inlet and outlet, a0 and a1 are the maximum and minimum
radiuses of the tube, respectively, m = tan φ is the slope of the
tube wall, and ε = a1

a0
is the minimum–maximum radius ratio.

Defining flow resistance with an electrical network analogy
in mind [22],

Rf = �P

Q
(10)

where Q = πa2
0um,0, the flow resistance of a converging–

diverging module becoms

Rf = 16µL

πa4
0

[
ε2 + ε + 1

3ε2
+ m2(1 + ε)

2ε5

]
(11)

At the limit when m = 0, Eq. (11) recovers the flow resistance
of a fixed-cross-section tube of radius a0, i.e.

Rf,0 = 16µL

πa4
0

(12)

In dimensionless form,

R∗
f =

[
ε2 + ε + 1

3ε2
+ m2(1 + ε)

2ε5

]
(13)

The concept of flow resistance, Eq. (10), can be applied
to complex geometries by constructing resistance networks to
analyze the pressure drop.

For small taper angles (φ ≤ 10◦), the term containing m2

becomes small, and thus Eq. (13) reduces to

R∗
f = ε2 + ε + 1

3ε2
(14)

The maximum difference between the dimensionless flow
resistance, R∗

f , obtained from Eq. (13) and that from Eq. (14)

Figure 2 Schematic of the periodic converging–diverging microtube.

is 6% for φ = 1◦. Equation (14) can also be derived from the
locally Poiseuille approximation. With this approximation, the
frictional resistance of an infinitesimal element in a gradually
varying cross-section microtube is assumed to be equal to the
flow resistance of that element with a straight wall. Equation
(14) is used for comparisons with numerical data.

NUMERICAL ANALYSIS

To validate the present analytical model, 15 modules
of converging–diverging tubes in a series were created
in a finite-element-based commercial code, COMSOL 3.2
(www.comsol.com). Figure 2 shows the schematic of the mod-
ules considered in the numerical study. Two geometrical pa-
rameters, taper angle, φ, and minimum–maximum radius ratio,
ε = a1

a0
, were varied from 0 to 15◦ and 0.5 to 1, respectively.

The working fluid was considered to be Newtonian with con-
stant fluid properties. A Reynolds number range from 0.01 to
100 was considered. Despite the model is developed based on
the low Reynolds numbers, higher Reynolds numbers (Re ∼
100) were also investigated to evaluate the limitations of the
model with respect to the flow condition. A structured, mapped
mesh was used to discretize the numerical domain. Equations
(1)–(3) were solved as the governing equations for the flow for
steady-state condition. A uniform velocity boundary condition
was applied to the flow inlet. Since the flow reaches streamwise
fully developed condition in a small distance from the inlet, the
same boundary conditions as Eq. (4) can be found at each mod-
ule inlet. A fully developed boundary condition was assumed
for the outlet, ∂

∂z
= 0. A grid refinement study was conducted

to ensure accuracy of the numerical results. Calculations were
performed with grids of 3 × 6, 6 × 12, 12 × 24, and 24 × 48
for each module for various Reynolds numbers and geometrical
configurations. The value of dimensionless flow resistance, R∗

f ,
was monitored since the velocity profile in any cross section
remained almost unchanged with the mesh refinement. Figure 3
shows the effect of mesh resolution on R∗

f for φ = 10◦,
ε = a1

a0
= 0.95, and Re = 10. As can be seen, the value of

R∗
f changes slower when the mesh resolution increases. The

fourth mesh, i.e., 24 × 48, was considered in this study for
all calculations to optimize computation cost and the solution
accuracy.

The effect of the streamwise length on the flow has been
shown in Figures 4 and 5. Dimensionless velocity profile, u∗ =

u
umax(z) , is plotted at β = a0

a(z) = 1.025 for the second to fifth

heat transfer engineering vol. 31 no. 8 2010
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M. AKBARI ET AL. 631

Figure 3 Mesh independency analysis.

modules as well as the dimensionless flow resistance, R∗
f for the

second to seventh modules for the typical values of φ = 10◦, ε =
a1
a0

= 0.95, and Re = 10. Both velocity profile and dimensionless
flow resistance do not change after the forth module, which
indicates that the flow after the fourth module is fully developed.
The same behavior was observed for the geometrical parameters
and Reynolds numbers considered in this work. Values of the
modules in the fully developed region were used in this work.

Good agreement between the numerical and analytical model
can be seen in Figure 6, where the dimensionless frictional flow
resistance, R∗

f , is plotted over a wide range of the Reynolds

number, Re = 2ρum,0a0

µ
. The upper and lower dashed lines rep-

resent the bounds of nondimensional flow resistance for the
investigated microtube. R∗

f,0 is the flow resistance of a uniform

Figure 4 Effect of the streamwise length.

Figure 5 Effect of module number on the dimensionless flow resistance.

cross-sectional tube with the radius of a0, and as expected its
value is unity. R∗

f,1 stands for the flow resistance of a tube with
the radius of a1. Since the average velocity is higher for the tube
of radius a1, the value of R∗

f,1 is higher than the value of R∗
f,0.

Both numerical and analytical results show the flow resistance
to be effectively independent of Reynolds number, in keeping
with low Reynolds number theory. For low Reynolds numbers,
in the absence of instabilities, flow resistance is independent of
the Reynolds number.

Table 1 lists the comparison between the present model, Eq.
(14), and the numerical results over the wide range of minimum–
maximum radius ratio, 0.5 ≤ ε ≤ 1, three typical Reynolds
numbers of Re = 1, 10, and 100, and taper angles of φ = 2.7◦

and 15◦. The model is originally developed for small wall taper
angles, φ ≤ 10, and low Reynolds numbers, Re ∼ 0(1); however,

Figure 6 Variation of R∗
f with the Reynolds number, φ = 10, and ε = 0.95.

heat transfer engineering vol. 31 no. 8 2010
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Table 1 Comparison of the proposed model and the numerical results

φ = 2

Re = 1 Re = 10 Re = 100

ε Model Numerical Error (%) Numerical Error (%) Numerical Error (%)

0.5 4.67 4.59 –1.7 4.59 –1.7 4.96 +6.2
0.6 3.02 2.97 –1.7 2.98 –1.7 3.14 +3.7
0.7 2.13 2.09 –1.7 2.09 –1.7 2.17 +1.9
0.8 1.59 1.56 –1.8 1.56 –1.8 1.59 +0.0
0.9 1.24 1.21 –2.2 1.22 –1.6 1.23 –0.8
1 1 1 0.0 1 0.0 1 0.0

φ = 7

0.5 4.67 4.67 0.0 4.72 +1.2 6.00 +28.6
0.6 3.02 3.02 0.0 3.05 +0.9 3.55 +17.2
0.7 2.13 2.13 –0.2 2.14 +0.7 2.33 +9.7
0.8 1.59 1.59 –0.6 1.60 +0.7 1.66 +4.5
0.9 1.24 1.24 0.0 1.24 0.0 1.25 +0.6
1 1 1 1.0 1 0.0 1 0.0

φ = 15

0.5 4.67 5.01 +7.3 5.25 +12.4 7.33 +57.0
0.6 3.02 3.24 +7.3 3.33 +10.0 4.11 +36.0
0.7 2.13 2.26 +6.2 2.32 +8.9 2.57 +20.7
0.8 1.59 1.67 +5.4 1.70 +6.7 1.76 +10.7
0.9 1.24 1.28 +3.4 1.29 +3.7 1.32 +6.8
1 1 1 0.0 1 0.0 1 0.0

Re = 2ρum,0a0
µ

Error% = R∗
f, model

−R∗
f, numerical

R∗
f, model

as can be seen in Table 1, the proposed model can be used for wall
taper angles up to 15◦, when Re < 10, with acceptable accuracy.
Note that the model shows good agreement with the numerical
data for higher Reynolds numbers, up to 100, when ε > 0.8.
Instabilities in the laminar flow due to high Reynolds numbers
and/or large variations in the microchannel cross section result
in the deviations of the analytical model from the numerical
data.

PARAMETRIC STUDIES

Effects of two geometrical parameters—minimum–
maximum radius ratio, ε, and taper angle, φ—are investigated
and shown in Figures 7 and 8. Input parameters of two typical
converging–diverging microtube modules are shown in Table 2.
In the first case, the effect of ε = a1

a0
on the flow resistance was

Table 2 Input parameters for two typical microtubes

Parameter Value

a0 500 µm
Re 10

Case 1
φ = 7

0.5 < ε < 1
Case 2
ε = 0.8

2 ≤ φ ≤ 15

studied when taper angle, φ = 7, was kept constant. As shown
in Figure 7, both numerical and analytical results indicate that
the frictional flow resistance, Rf , decreases by increasing of
the minimum–maximum radius ratio, ε. For a constant taper
angle, increase of ε = a1

a0
increases the module length as well

as the average fluid velocity. Hence, higher flow resistance can
be observed in Figure 7 for smaller values of ε. For better phys-
ical interpretation, flow resistances of two straight microtubes

Figure 7 Effect of ε on the flow resistance, φ = 7, and Re = 10.

heat transfer engineering vol. 31 no. 8 2010
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Figure 8 Effect of φ on the flow resistance, ε = 0.8, and Re = 10.

with the maximum and minimum module radiuses are plotted in
Figure 7. Since the total length of the module increases inversely
with ε, a slight increase in Rf,0 can be observed. On the other
hand, the flow resistance of the microtube with the minimum
radius of the module Rf,1 increases sharply when ε becomes
smaller. Keeping in mind that the flow resistance is inversely re-
lated to the fourth power of the radius, Eq. (12), and a1 changes
with ε, sharp variation of Rf,1 can be observed in Figure 7.

Variation of the flow resistance with respect to the taper angle
when the minimum–maximum radius ratio, ε = a1

a0
, was kept

constant is plotted in Figure 8. Since a1 remains constant in this
case, the only parameter that has an effect on the flow resistance
is the variation of the module length with respect to the taper

Figure 9 Effect of φ and ε on R∗
f , Re = 1.

angle. Both Rf,0 and Rf,1 increase inversely with the taper angle
φ in a similar manner.

The effect of the module length can be eliminated by nondi-
mensionalizing the module flow resistance with respect to the
flow resistance of a straight microtube. Dimensionless flow re-
sistance with the definition of Eq. (12) was used in Figure 9.
As can be seen, the taper angle φ effect is negligible while the
controlling parameter is the minimum–maximum radius ratio, ε.

SUMMARY AND CONCLUSIONS

Laminar fully developed flow and pressure drop in gradually
varying cross-sectional converging–diverging microtubes have
been investigated in this work. A compact analytical model
has been developed by assuming that the axial velocity pro-
file remains parabolic in the diverging and converging sections.
To validate the model, a numerical study has been performed.
For the range of Reynolds number and geometrical parameters
considered in this work, numerical observations show that the
parabolic assumption of the axial velocity is valid. The follow-
ing results are also found through analysis:

• For small taper angles (φ ≤ 10), effect of the taper angle on
the dimensionless flow resistance, R∗

f can be neglected with
less than 6% error and the local Poiseuille approximation can
be used to predict the flow resistance.

• It has been observed through the numerical analysis that the
flow becomes fully developed after less than five modules of
length.

• Comparing the present analytical model with the numerical
data shows good accuracy of the model to predict the flow
resistance for Re < 10, φ ≤ 10, and 0.5 ≤ ε ≤ 1. See Table
1 for more details.

• The effect of minimum–maximum radius ratio, ε, is found to
be more significant than taper angle, φ on the frictional flow
resistance.

As an extension of this work, an experimental investigation to
validate the present model and numerical analysis is in progress.

NOMENCLATURE

a(z) = radius of tube, m
a0 = maximum radius of tube, m
a1 = minimum radius of tube, m
L = half of module length, m
m = slope of tube wall, [—]
Q = volumetric flow rate, m3/s
r, z = cylindrical coordinate, m
Re = Reynolds number, 2ρum,0a0

µ

Rf = frictional resistance, pa s
m3

R∗
f = normalized flow resistance, Rf

Rf,0

um = mean fluid axial velocity, m/s
u, v = velocity in z and r directions, m/s

heat transfer engineering vol. 31 no. 8 2010
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Greek Symbols

β = a0
a(z)

η = r
a(z)

ε = a1
a0

ρ = fluid density, kg/m3

µ = fluid viscosity, kg/m-s
φ = angle of tube wall, [—]
�P = pressure drop, Pa
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